首页> 外文OA文献 >DYNAMIC RESPONSE AND DAMAGE EVOLUTION OF COMPOSITE MATERIALS SUBJECTED TO UNDERWATER EXPLOSIVE LOADING: AN EXPERIMENTAL AND COMPUTATIONAL STUDY
【2h】

DYNAMIC RESPONSE AND DAMAGE EVOLUTION OF COMPOSITE MATERIALS SUBJECTED TO UNDERWATER EXPLOSIVE LOADING: AN EXPERIMENTAL AND COMPUTATIONAL STUDY

机译:水下爆炸载荷作用下复合材料的动力响应与损伤演化:实验与计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dynamic response and damage evolution of composite materials subjected to underwater explosive loading has been studied. The study utilizes both experimental and numerical techniques to aid in the understanding of the behavior of these materials under shock loading conditions. The objective of the project is to develop a better understanding of the response of composite materials when subjected to shock loading conditions leading to more efficiently designed structures. The focus of the work is on performing high fidelity experiments under controlled shock loading and corresponding finite element simulations of the experiments. The work is divided into three phases, each of which build and expand upon the preceding work.In the first phase of the research the transient response and development of damage mechanisms of E-Glass / Epoxy composite plates is studied. The plates are bi-axial laminates consisting of a non-woven, parallel fiber construction, and are round, flat disks. The work consists of experiments, utilizing a water filled conical shock tube and computational simulations, utilizing the commercially available LS-DYNA finite element code. Two series of experiments have been performed and simulated: (1) a reduced energy series which allowed for the use of strain gages and (2) a series with increased energy which imparted material damage. The strain data obtained from the reduced energy experiments and the corresponding simulations are correlated using the Russell Error measure, a mathematical technique which evaluates the differences in two transient data sets by quantifying the variation in magnitude and phase. It is shown that there is a high level of correlation between the experiments and the simulations when using this measure. Additionally the extent of the damage, including the individual mechanisms, from the high energy experiments and simulations are compared and show good agreement.The objective of the second phase of the project was to increase the geometrical complexity of the composite plates by shifting from flat to curved mid-sections. The plates utilized in the second part of the study are E-Glass / Vinyl Ester, 0/90 biaxial laminates. The water filled conical shock tube is utilized to impart shock loading to the plates. Computational finite element simulations are performed with the LS-DYNA finite element code. The transient response of the plates was measured using a three-dimensional (3D) Digital Image Correlation (DIC) system, which included high speed photography and specialized post processing software. This ultra high speed system records full field shape and displacement profiles in real time. The transient response of the plates is compared to the simulation results using both point-wise time histories as well as full field deformation profiles. The DIC data and the computational results show a high level of correlation using the Russell Error measure.The third phase of the project investigates the relative response of three different laminate constructions. The objective is to determine the effectiveness of the laminate variations on increasing the performance of the laminate used in the second phase. Specifically, to improve the dynamic response and mitigate the damage mechanisms that were observed in the experiments from phases one and two. Three laminate constructions have been investigated: (1) a baseline 0°/90° biaxial layup, (2) a 0°/90° biaxial layup that includes a thin glass veil between plies, and (3) a 0°/90° biaxial layup that has a coating of polyurea applied to the back face. The digital image correlation system is used to capture the real-time deformation and velocity response of the plates. The use of polyurea is shown to improve the material performance, while the inclusion of lightweight veils between the plies is shown to negatively affect the response.
机译:研究了水下爆炸载荷作用下复合材料的动力响应和损伤演化。这项研究利用实验和数值技术来帮助理解这些材料在冲击载荷条件下的行为。该项目的目的是更好地理解复合材料在承受冲击载荷条件下的响应,从而使结构设计更加有效。工作的重点是在受控冲击载荷下进行高保真度实验以及相应的实验有限元模拟。这项工作分为三个阶段,每个阶段都在前一个工作的基础上进行扩展。在第一阶段的研究中,研究了E-玻璃/环氧树脂复合板的瞬态响应和损伤机理的发展。这些板是由无纺布,平行纤维构造组成的双轴层压板,并且是圆形的平盘。这项工作包括利用充水的锥形减震管进行的实验以及利用市售的LS-DYNA有限元代码进行的计算模拟。已经进行了两个系列的实验并进行了模拟:(1)减少能量的序列,允许使用应变计;(2)能量增加的序列,导致材料损坏。使用Russell误差度量将从降低能量的实验和相应的模拟中获得的应变数据关联起来,Russell误差度量是一种数学技术,通过量化幅度和相位的变化来评估两个瞬态数据集中的差异。结果表明,使用这种方法时,实验与仿真之间存在高度相关性。此外,比较了高能实验和模拟中的损伤程度,包括各个机制,并显示出良好的一致性。该项目的第二阶段的目标是,通过将平面从平面更改为平面,以增加复合板的几何复杂性弯曲的中间部分。在研究的第二部分中使用的板是E-玻璃/乙烯基酯,0/90双轴层压板。充水的圆锥形减震管用于对板施加减震载荷。用LS-DYNA有限元代码执行计算有限元模拟。使用三维(3D)数字图像关联(DIC)系统测量印版的瞬态响应,该系统包括高速摄影和专门的后处理软件。这种超高速系统实时记录全场形状和位移曲线。使用逐点时间历史记录和全场变形曲线,将板的瞬态响应与仿真结果进行比较。 DIC数据和计算结果显示出使用Russell误差度量的高度相关性。该项目的第三阶段研究了三种不同层压板结构的相对响应。目的是确定层压板变化对提高第二阶段中使用的层压板的性能的有效性。具体而言,为了改善动态响应并减轻实验中从第一阶段和第二阶段观察到的破坏机理。已经研究了三种层压结构:(1)基线0°/ 90°双轴铺层;(2)0°/ 90°双轴铺层,其中层之间包括薄玻璃幕布;(3)0°/ 90°双轴向叠层,其背面涂有聚脲涂层。数字图像相关系统用于捕获板的实时变形和速度响应。已显示使用聚脲可改善材料性能,而在层之间包含轻质面纱则显示会对响应产生负面影响。

著录项

  • 作者

    LeBlanc, James;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号